Genistein [5,7-dihyroxy-3-(-4-hydroxyphenyl)-4H-1-benzopyran-4-one] is a major isoflavone in soy and soy-based food products that are regularly consumed by people in Asian countries (Ronis, 2016). Indeed, median daily intake of isoflavones among adults in Japan and China is about 25–50 mg which is several-folds higher than the consumption of these compounds by women in the western countries (less than 3 mg) (Sak, 2017a). Several epidemiological sdence of certain cancer types, such as breast and prostate cancer, in Asian countries as compared to the western world. Therefore, recent interest has been focused on the possible contribution of high dietary consumption of isoflavones for prevention and suppression of tumorigenesis (Sak, 2017b). In the past few decades, numerous studies have been published about the potential anticancer role of genistein both in cell cultures as well as animal models (Spagnuolo et al., 2015 Kim et al., 2014). This natural... See full list on Various authentic and reliable databases, such as PubMed, EBOSCOhost, ScienceDirect, Scopus, Web of Science, and Cochrane Library, were used to search and collect literature. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria (Liberati et al., 2009) has been followed. Relevant full-length articles published in peer-reviewed juded. Conference abstracts, book chapters, anduded. Only Euded in this review. Major keywordsuded: genistein, cancer, anticancer, molecular mechanisms prevention, treatment, in vivo, in vitro, and clinical studies. Tbliography of the primary literature was also studied to collect additional relevant articles. See full list on Genistein belongs to isoflavone family and is obtained from soy products, such as soybeans. It is very well-known plant secondary metabolite that consists of the 3-phenylchromen-4-one nucleus made up of two aromatic rings (A and B) (Figure 1). Further, these rings are linked to another carbon pyran ring (C) (Figure 1). Other functional group in its basic carbon skeleton are C2–C3 double bond, an oxo group at C4 position of ring C. Additionally, there are three hydroxyl groups at C5, C7, and C4′ positions of ring A and B, respectively (Figure 1). Genistein was first isolated in 1899 from a specieoria (Dyer’s broom) of family Fabaceae (Perkin and Newbury, 1899). Following the initial discovery, it has been found in many plants, such as lupin, fava beans, soybeans, and kudzu. Genistein was successfully synthesized first time in 1928 (Baker and Robinson, 1928). Genistein is synthesized by treatment of trihydroxybenzoin, which, in turn, is obtained via a... See full list on The molecular mechanism of action of genistein as a chemotherapeutic agent has been extensively studied in different types of cancers. Genistein modulates various steps of cell cycle, apoptosis, angiogenesis, and metastasis. The main mude caspases, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), nuclear factor-κB (NF-κB), inhibitor of NF-κB, phosphoinositide 3-kinase/Akt (PI3K/Akt), extracellular signal-regulated kinase 1/2 (ERK 1/2), mitogen-activated protein kinase (MAPK), and Wingless and integration 1/β-catenin (Wnt/β-catenin) signaling pathway. Besides the transcription factors, genistein-induced endoplasmic reticulum (ER) stress and its downstream targets are also reported to induce apoptosis in cancer. Interestingly, peroxisome proliferator-activated receptors (PPARs) have also surfaced as potential therapeutic targets of interest for modulating tumor growth, and genistein has been documented to induce apoptosis in tumor cells vi... See full list on Despite knowledge gained and discussed above and the tremendous clinical success in cancer therapy in the present era, the clinical application of genistein as a promising therapeutic agent for cancer treatment is not fully understood. However, one of the major limitations of currently available anticancer drugs is the ability of cancer cells to develop chemoresistance against such drugs. Cancer cells are able to produce multidrug resistance proteins, such as multidrug resistance protein 1, and multidrug resistance-associated protein 1 (ABCC1), which causes drug resistance. Therefore, chemoresistance represents a serious clinical obstacle in effectively treating cancer patients. Polo-like kinase 1 (Plk1) has been shown to be involved in chemoresistance, so Plk1-targeted therapies could possibly reduce or eliminate the chemoresistance of cancer cells against anticancer drugs. Genistein was proposed as a Plk1 inhibitor, which effectively downregulates the expression of multidrug resis... See full list on The present manuscript extensively reviewed the available scientific literature on the potential role of genistein as an anticancer agent with detailed description of its targets in signaling cascades. The in vivo and in vitro studies further emphasized the chemopreventive potential of genistein, in view of which genistein has been upscaled to clinical trials. This is mainly promising for the patients in developing countries where currently marketed therapies for cancer treatment are very expensive and beyond the reach of patients, thereby limiting the affordability of treatment options. Thus, developing countries are desperately looking for low cost options for cancer treatment and prevention, of which natural products as anticancer agents seem promising. This further emphasizes the need to develop safe and effective natural product-derived agents as chemopreventive drugs which are easily available. Genistein (an isoflavone) is one among bioactive natural molecules with aromatic su... See full list on HT performed literature survey and data extraction. MT contributed sections on apoptosis, cell cycle arrest, antiangiogenesis, anti-inflammatory and conclusion and also created figures of the indicated sections. FT participated in data extraction. KS extracted data and wrote the abstract and introduction section. MK prepared the section on the chemistry of genistein. AS and VA proofread the manuscript. US and AJ composed the text on miRNA and genistein. VA and HT revised the manuscript. AB critically reviewed and edited the manuscript and also made suggestions for improvements. All authors read and approved the final manuscript. See full list on NGO Praeventio, Tartu, Estonia. The remaining authors declare that the research was conducted in the absence of any commercial or ficial relationships that could be construed as a potential conflict of interest. See full list on
Get Price